Python 量子運算(二三):外積
2023/02/10
-----
Fig. 23.1. Outer product.
-----
「Connection with the Kronecker product
The outer product and Kronecker product are closely related; in fact the same symbol is commonly used to denote both operations.
與克羅內克積的關係
外積與克羅內克積很接近; 事實上,同一個符號通常用於表示這兩種操作。
」[1]。
-----
代碼 23.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | # Program 23.1:Outer product import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt class Point: def __init__(self, x, y, z): self.x = x self.y = y self.z = z def Line(ax, A, B): ax.plot([A.x, B.x], [A.y, B.y], [A.z, B.z], 'b') return def Cube(ax, P1, P2): # parallel to x axis for z in range(P1.z, P2.z+1): S = Point(P1.x, P1.y, z) E = Point(P2.x, P1.y, z) Line(ax, S, E) for y in range(P1.y, P2.y+1): S = Point(P1.x, y, P2.z) E = Point(P2.x, y, P2.z) Line(ax, S, E) # parallel to y axis for x in range(P1.x, P2.x+1): S = Point(x, P1.y, P2.z) E = Point(x, P2.y, P2.z) Line(ax, S, E) for z in range(P1.z, P2.z+1): S = Point(P2.x, P1.y, z) E = Point(P2.x, P2.y, z) Line(ax, S, E) # parallel to z axis for x in range(P1.x, P2.x+1): S = Point(x, P1.y, P1.z) E = Point(x, P1.y, P2.z) Line(ax, S, E) for y in range(P1.y, P2.y+1): S = Point(P2.x, y, P1.z) E = Point(P2.x, y, P2.z) Line(ax, S, E) return def Set(ax, lim): ax.set_xlim([0, lim]) ax.set_ylim([0, lim]) ax.set_zlim([0, lim]) ax.set_axis_off() return def Subplot_1(): ax = plt.subplot(221) # string setting s1 = ( r'$\mathbf{u} \otimes \mathbf{v} = \ $' r'$\mathbf{u} \mathbf{v}^{\operatorname{T}} =$' ) s2 = ( r'$\begin{bmatrix}$' r'$u_{1} \mathbf{v}^{\operatorname{T}} \\$' r'$\vdots \\$' r'$u_{m} \mathbf{v}^{\operatorname{T}}$' r'$\end{bmatrix}$' ) # string output ax.text(0.1, 0.65, s1) ax.text(0.1, 0.35, s2) plt.title('Outer Product') ax.text(0.5, 0.05, '(a)', fontsize=20) ax.set_axis_off() return def Subplot_2(): ax = fig.add_subplot(222, projection='3d') # 3d subplot P1 = Point(0, 0, 0) P2 = Point(1, 1, 3) Cube(ax, P1, P2) Set(ax, 6) for i in range(P2.z): for j in range(P2.x): ax.text(j, 0, i, r'$\mathbf{v}^{\operatorname{T}}$') plt.title('Rank 2 Tensor', color='r') ax.text(P2.x, P2.y, P2.z, r'matrix $(\mathbf{u} \otimes \mathbf{v})$') ax.text(4, 0, -1, '(b)', fontsize=20) return def Subplot_3(): ax = fig.add_subplot(223, projection='3d') # 3d subplot P1 = Point(0, 0, 0) P2 = Point(1, 1, 3) Cube(ax, P1, P2) Set(ax, 6) plt.title('Rank 1 Tensor', color='r') ax.text(P2.x, P2.y, P2.z, r'vector $\mathbf{u}$') ax.text(4, 0, -1, '(c)', fontsize=20) return def Subplot_4(): ax = fig.add_subplot(224, projection='3d') # 3d subplot P1 = Point(0, 0, 0) P2 = Point(4, 1, 1) Cube(ax, P1, P2) P3 = Point(5, 0, 0) P4 = Point(6, 1, 4) Cube(ax, P3, P4) Set(ax, 6) plt.title("Rank 1 Tensor", color='r') ax.text(0, 0, 3, 'Row Vecor(shape 1x4)', fontsize=16) ax.text(3, 0, 5, 'Column Vector(shape 4x1)', fontsize=16) ax.text(-1, 1, 1, r'vector $\mathbf{v}^{\operatorname{T}}$') ax.text(P4.x, P4.y, P4.z, r'vector $\mathbf{v}$') ax.text(4, 0, -1, '(d)', fontsize=20) return # figure setting mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.preamble'] = r'\usepackage{{amsmath}}' mpl.rcParams['font.size'] = 40 fig = plt.figure(figsize=(16, 16)) Subplot_1() Subplot_2() Subplot_3() Subplot_4() plt.savefig('/content/drive/My Drive/pqc/0023_001.png') # plt.show() |
解說:
-----
References
[1] Outer product - Wikipedia
https://en.wikipedia.org/wiki/Outer_product
[2] NumPy Illustrated: The Visual Guide to NumPy | by Lev Maximov | Better Programming
https://en.wikipedia.org/wiki/Outer_product
[3] matplotlib - Python - Plotting colored grid based on values - Stack Overflow
https://stackoverflow.com/questions/43971138/python-plotting-colored-grid-based-on-values
-----
Python 量子運算(目錄)
https://mandhistory.blogspot.com/2022/01/quantum-computing.html
-----
沒有留言:
張貼留言
注意:只有此網誌的成員可以留言。