2023年2月16日 星期四

Python 量子運算(二四):張量積

Python 量子運算(二四):張量積

2023/02/10

-----


Fig. 24.1. Tensor product.

-----

張量積的定義

「In mathematics, the tensor product V⊗ W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V × W → V ⊗ W that maps a pair (v,w), v ∈ V, w ∈ W to an element of V ⊗ W denoted  v ⊗ w. An element of the form v ⊗ w is called the tensor product of v and w.」[1]。

張量積與外積

「If arranged into a rectangular array, the coordinate vector of  x ⊗ y is the outer product of the coordinate vectors of x and y. Therefore, the tensor product is a generalization of the outer product.」[1]。

-----

張量積與克羅內克積

「Tensor Product

It is a more general case of the Kronecker product, it takes the right hand operand and duplicates it in every element of the left hand operand. Each of these copies is scalar multiplied by the corresponding element.

張量積

這是 Kronecker 乘積的更一般情況,它採用右邊運算元並將其複製到左邊運算元的每個元素中。 這些副本中的每一個都是純量乘以相應的元素。

」[2]。

    @classmethod

    def _tensor(cls, a, b):

        ret = copy.copy(a)

        ret._op_shape = a._op_shape.tensor(b._op_shape)

        ret._data = np.kron(a.data, b.data)

        return ret

」[4]。

-----

代碼 24.1


  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Program 24.1:Tensor product
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt


class Point:
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z


def Line(ax, A, B):
    ax.plot([A.x, B.x], [A.y, B.y], [A.z, B.z], 'b')
    return


def Cube(ax, P1, P2):

    # parallel to x axis
    for z in range(P1.z, P2.z+1):
        S = Point(P1.x, P1.y, z)
        E = Point(P2.x, P1.y, z)
        Line(ax, S, E)
    for y in range(P1.y, P2.y+1):
        S = Point(P1.x, y, P2.z)
        E = Point(P2.x, y, P2.z)
        Line(ax, S, E)

    # parallel to y axis
    for x in range(P1.x, P2.x+1):
        S = Point(x, P1.y, P2.z)
        E = Point(x, P2.y, P2.z)
        Line(ax, S, E)
    for z in range(P1.z, P2.z+1):
        S = Point(P2.x, P1.y, z)
        E = Point(P2.x, P2.y, z)
        Line(ax, S, E)

    # parallel to z axis
    for x in range(P1.x, P2.x+1):
        S = Point(x, P1.y, P1.z)
        E = Point(x, P1.y, P2.z)
        Line(ax, S, E)
    for y in range(P1.y, P2.y+1):
        S = Point(P2.x, y, P1.z)
        E = Point(P2.x, y, P2.z)
        Line(ax, S, E)

    return


def Set(ax, lim):
    ax.set_xlim([0, lim])
    ax.set_ylim([0, lim])
    ax.set_zlim([0, lim])
    ax.set_axis_off()
    return


def Subplot_1():
    ax = plt.subplot(221)

    # string setting
    s1 = (
        r'$\mathbf{v} \otimes \mathbf{w} = \ $'
    )
    s2 = (
        r'$\begin{bmatrix}$'
        r'$v_{1} \mathbf{w} \\$'
        r'$\vdots \\$'
        r'$v_{m} \mathbf{w}$'
        r'$\end{bmatrix}$'
    )

    # string output
    ax.text(0.1, 0.65, s1)
    ax.text(0.1, 0.35, s2)

    plt.title('Tensor Product')
    ax.text(0.5, 0.05, '(a)', fontsize=20)
    ax.set_axis_off()

    return


def Subplot_2():
    ax = fig.add_subplot(222, projection='3d')  # 3d subplot

    P1 = Point(0, 0, 0)
    P2 = Point(1, 1, 3)
    Cube(ax, P1, P2)
    Set(ax, 6)

    for i in range(P2.z):
        for j in range(P2.x):
            ax.text(j, 0, i, r'$\mathbf{w}$')

    plt.title('Rank 1 Tensor', color='r')
    ax.text(P2.x, P2.y, P2.z, r'vector $(\mathbf{v} \otimes \mathbf{w})$')
    ax.text(4, 0, -1, '(b)', fontsize=20)

    return


def Subplot_3():
    ax = fig.add_subplot(223, projection='3d')  # 3d subplot

    P1 = Point(0, 0, 0)
    P2 = Point(1, 1, 3)
    Cube(ax, P1, P2)
    Set(ax, 6)

    plt.title('Rank 1 Tensor', color='r')
    ax.text(P2.x, P2.y, P2.z, r'vector $\mathbf{v}$')
    ax.text(4, 0, -1, '(c)', fontsize=20)

    return


def Subplot_4():
    ax = fig.add_subplot(224, projection='3d')  # 3d subplot

    P1 = Point(0, 0, 0)
    P2 = Point(1, 1, 2)
    Cube(ax, P1, P2)
    Set(ax, 6)

    plt.title("Rank 1 Tensor", color='r')
    ax.text(P2.x, P2.y, P2.z, r'vector $\mathbf{w}$')
    ax.text(4, 0, -1, '(d)', fontsize=20)

    return


# figure setting
mpl.rcParams['text.usetex'] = True
mpl.rcParams['text.latex.preamble'] = r'\usepackage{{amsmath}}'
mpl.rcParams['font.size'] = 40
fig = plt.figure(figsize=(16, 16))

Subplot_1()
Subplot_2()
Subplot_3()
Subplot_4()

# plt.savefig('/content/drive/My Drive/pqc/0024_001.png')
plt.show()

解說:

-----

References


# 張量積

[1] Tensor product - Wikipedia

https://en.wikipedia.org/wiki/Tensor_product


# 定義:線性組合

[2] 淺談張量分解(四):外積、Kronecker積和張量積- 知乎

https://zhuanlan.zhihu.com/p/26774182


# 線性組合:兩層網路

[3] The Tensor Product, Demystified

https://www.math3ma.com/blog/the-tensor-product-demystified


# 兩層網路:矩陣

[4] (25) Tensors for Beginners 13: Tensor Product vs Kronecker Product - YouTube

https://www.youtube.com/watch?v=qp_zg_TD0qE


[5] Maths - Tensor operations - Martin Baker

https://www.euclideanspace.com/maths/algebra/matrix/tensor/operations/index.htm


[6] https://qiskit.org/documentation/stubs/qiskit.quantum_info.Operator.tensor.html

https://qiskit.org/documentation/stubs/qiskit.quantum_info.Operator.tensor.html


[7] https://qiskit.org/documentation/_modules/qiskit/quantum_info/operators/operator.html#Operator.tensor

https://qiskit.org/documentation/_modules/qiskit/quantum_info/operators/operator.html#Operator.tensor

-----

Python 量子運算(目錄)

https://mandhistory.blogspot.com/2022/01/quantum-computing.html

-----

沒有留言:

張貼留言

注意:只有此網誌的成員可以留言。