Python 量子運算(一八):和差角公式
2023/02/04
-----
Fig. 18.1. Angle sum and difference formulas.
-----
代碼 18.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | # Program 18.1:Angle sum and difference formulas import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt # defined by angle class PointT1: def __init__(self, t, r): self.t = t # theta self.r = r # radius self.x = r * np.cos(t) self.y = r * np.sin(t) # defined by points class PointT2: def __init__(self, x, y): self.x = x self.y = y def Subplot_1(): ax = plt.subplot(221) # circle c = np.linspace(0, np.pi*2, 100) r = 1 c_x = r * np.cos(c) c_y = r * np.sin(c) ax.plot(c_x, c_y, 'g', linestyle='--') # points t_A = (31/24) * np.pi # theta A setting PA = PointT1(t_A, r) # A PC = PointT1(t_A-np.pi, r) # C, determined by A ax.plot([PA.x, PC.x], [PA.y, PC.y], 'purple', linewidth=5.0) # AC ax.text(PA.x-0.1, PA.y-0.1, 'A') ax.text(PC.x+0.05, PC.y+0.05, 'C') PB = PointT2(PC.x, PA.y) # B, determined by A, C ax.plot([PA.x, PB.x], [PA.y, PA.y], 'r', linestyle='--') # AB ax.plot([PB.x, PB.x], [PB.y, PC.y], 'purple', linestyle='--') # BC ax.text(PB.x+0.05, PB.y-0.1, 'B') PG = PointT2(PA.x, PC.y) # G, determined by A, C ax.plot([PA.x, PG.x], [PA.y, PG.y], 'purple', linestyle='--') # AG ax.plot([PC.x, PG.x], [PC.y, PG.y], 'purple', linestyle='--') # CG ax.text(PG.x-0.1, PG.y+0.05, 'G') t_E = (47/24) * np.pi # theta E setting PE = PointT1(t_E, r) # E ax.plot([PA.x, PE.x], [PA.y, PE.y], 'r', linewidth=5.0) # AE ax.plot([PC.x, PE.x], [PC.y, PE.y], 'b', linewidth=5.0) # CE ax.text(PE.x+0.05, PE.y, 'E') PD = PointT2(PE.x, PC.y) # D, determined by C, E ax.plot([PC.x, PD.x], [PC.y, PD.y], 'b', linestyle='--') # CD ax.plot([PD.x, PE.x], [PD.y, PE.y], 'b', linestyle='--') # DE ax.text(PD.x+0.05, PD.y+0.05, 'D') PF = PointT2(PE.x, PB.y) # F, determined by B, E ax.plot([PB.x, PF.x], [PB.y, PF.y], 'r', linestyle='--') # BF ax.plot([PE.x, PF.x], [PE.y, PF.y], 'r', linestyle='--') # EF ax.text(PF.x+0.05, PF.y-0.1, 'F') # angles ax.text(PA.x+0.25, PA.y+0.20, r'$\alpha$') ax.text(PA.x+0.35, PA.y+0.05, r'$\beta$') ax.text(PE.x-0.08, PE.y+0.25, r'$\beta$') ax.text(PC.x-0.35, PC.y-0.10, r'$\alpha+\beta$') # edges ax.text((PA.x+PE.x)/2-0.2, (PA.y+PE.y)/2, r'$\cos\alpha$', color='r') ax.text((PA.x+PF.x)/2-0.1, (PA.y+PF.y)/2, r'$\cos\alpha\cos\beta$', color='r') ax.text((PE.x+PF.x)/2, (PE.y+PF.y)/2, r'$\cos\alpha\sin\beta$', color='r') ax.text((PC.x+PE.x)/2-0.2, (PC.y+PE.y)/2, r'$\sin\alpha$', color='b') ax.text((PD.x+PE.x)/2, (PD.y+PE.y)/2, r'$\sin\alpha\cos\beta$', color='b') ax.text((PC.x+PD.x)/2-0.15, (PC.y+PD.y)/2, r'$\sin\alpha\sin\beta$', color='b') ax.text((PC.x+PG.x)/2-0.2, (PC.y+PG.y)/2, r'$\cos(\alpha+\beta)$', color='purple') ax.text((PA.x+PG.x)/2-0.4, (PA.y+PG.y)/2, r'$\sin(\alpha+\beta)$', color='purple') ax.text(0, -1.3, '(a)') ax.set_aspect(1) # height : width ax.set_axis_off() return def Subplot_2(): ax = plt.subplot(222) # string setting s1 = r'$\overline{AC}=1$' s2_1 = r'$\sin(\alpha+\beta)$' s2_2 = r'$=\overline{AG}=\overline{DE}+\overline{EF}$' s2_3 = r'$=\sin\alpha\cos\beta+\cos\alpha\sin\beta$' s3_1 = r'$\cos(\alpha+\beta)$' s3_2 = r'$=\overline{CG}=\overline{AF}-\overline{BF}$' s3_3 = r'$=\cos\alpha\cos\beta-\sin\alpha\sin\beta$' # string output ax.text(0.10, 0.95, s1, fontsize=24) ax.text(0.20, 0.80, s2_1, color='purple', fontsize=40) ax.text(0.10, 0.65, s2_2, fontsize=24) ax.text(0.10, 0.50, s2_3, fontsize=40) ax.text(0.20, 0.30, s3_1, color='purple', fontsize=40) ax.text(0.10, 0.15, s3_2, fontsize=24) ax.text(0.10, 0.00, s3_3, fontsize=40) ax.text(0.5, -0.09, '(b)') ax.set_axis_off() return def Subplot_3(): ax = plt.subplot(223) # circle c = np.linspace(0, np.pi*2, 100) r = 1 c_x = r * np.cos(c) c_y = r * np.sin(c) ax.plot(c_x, c_y, 'g', linestyle='--') t_A = (31/24) * np.pi # theta A setting PA = PointT1(t_A, r) # A PC = PointT1(t_A-np.pi, r) # C, determined by A ax.plot([PA.x, PC.x], [PA.y, PC.y]) # AC ax.plot([PA.x, PC.x], [PA.y, PC.y], 'purple', linewidth=5.0) # AC ax.text(PA.x-0.1, PA.y-0.1, 'A') ax.text(PC.x+0.05, PC.y+0.05, 'C') PB = PointT2(PC.x, PA.y) # B, determined by A, C ax.plot([PA.x, PB.x], [PA.y, PA.y]) # AB ax.plot([PB.x, PB.x], [PB.y, PC.y]) # BC ax.plot([PA.x, PB.x], [PA.y, PA.y], 'r', linewidth=5.0) # AB ax.plot([PB.x, PB.x], [PB.y, PC.y], 'b', linewidth=5.0) # BC ax.text(PB.x+0.05, PB.y-0.1, 'B') t_E = (47/24) * np.pi # theta E setting PE = PointT1(t_E, r) # E ax.plot([PA.x, PE.x], [PA.y, PE.y], 'purple', linestyle='--') # AE ax.plot([PC.x, PE.x], [PC.y, PE.y], 'purple', linestyle='--') # CE ax.text(PE.x+0.05, PE.y, 'E') # finding Point G for learning slope_AE = (PE.y - PA.y) / (PE.x - PA.x) # finding Point D slope_CE = (PE.y - PC.y) / (PE.x - PC.x) # -(1/slope_AE) slope_BD = slope_CE x1 = (slope_AE * PA.x - slope_BD * PB.x + PB.y - PA.y) x2 = (slope_AE - slope_BD) PD_x = x1 / x2 PD_y = slope_AE * (PD_x - PA.x) + PA.y PD = PointT2(PD_x, PD_y) ax.plot([PB.x, PD.x], [PB.y, PD.y], 'r', linestyle='--') # BD ax.text(PD.x, PD.y+0.05, 'D') # finding Point F PF_x = PE.x - PD.x + PB.x PF_y = PE.y - PD.y + PB.y PF = PointT2(PF_x, PF_y) ax.plot([PB.x, PF.x], [PB.y, PF.y], 'b', linestyle='--') # BF ax.plot([PE.x, PF.x], [PE.y, PF.y], 'r', linestyle='--') # EF ax.text(PF.x+0.05, PF.y-0.1, 'F') # angles ax.text(PA.x+0.20, PA.y+0.20, r'$\alpha-\beta$') ax.text(PA.x+0.35, PA.y+0.05, r'$\beta$') ax.text(PC.x+0.02, PC.y-0.30, r'$\beta$') # edges ax.text((PA.x+PB.x)/2, (PA.y+PB.y)/2+0.01, r'$\cos\alpha$', color='r') ax.text((PA.x+PD.x)/2, (PA.y+PD.y)/2+0.10, r'$\cos\alpha\cos\beta$', color='r') ax.text((PB.x+PD.x)/2-0.20, (PB.y+PD.y)/2, r'$\cos\alpha\sin\beta$', color='r') ax.text((PB.x+PC.x)/2-0.21, (PB.y+PC.y)/2, r'$\sin\alpha$', color='b') ax.text((PB.x+PF.x)/2, (PB.y+PF.y)/2-0.05, r'$\sin\alpha\sin\beta$', color='b') ax.text((PC.x+PE.x)/2, (PC.y+PE.y)/2, r'$\sin(\alpha-\beta)$', color='purple') ax.text(0, -1.38, '(c)') ax.set_aspect(1) # height : width ax.set_axis_off() return def Subplot_4(): ax = plt.subplot(224) # string setting s1 = r'$\overline{AC}=1$' s2_1 = r'$\sin(\alpha-\beta)$' s2_2 = r'$=\overline{CE}=\overline{CF}-\overline{EF}$' s2_3 = r'$=\sin\alpha\cos\beta-\cos\alpha\sin\beta$' s3_1 = r'$\cos(\alpha-\beta)$' s3_2 = r'$=\overline{AE}=\overline{AD}+\overline{DE}$' s3_3 = r'$=\cos\alpha\cos\beta+\sin\alpha\sin\beta$' # string output ax.text(0.10, 0.95, s1, fontsize=24) ax.text(0.20, 0.80, s2_1, color='purple', fontsize=40) ax.text(0.10, 0.65, s2_2, fontsize=24) ax.text(0.10, 0.50, s2_3, fontsize=40) ax.text(0.20, 0.30, s3_1, color='purple', fontsize=40) ax.text(0.10, 0.15, s3_2, fontsize=24) ax.text(0.10, 0.00, s3_3, fontsize=40) ax.text(0.5, -0.09, '(d)') ax.set_axis_off() return mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.preamble'] = r'\usepackage{{amsmath}}' mpl.rcParams['font.size'] = 20 fig = plt.figure(figsize=(16, 16)) Subplot_1() Subplot_2() Subplot_3() Subplot_4() # plt.savefig('/content/drive/My Drive/pqc/0018_001.png') plt.show() |
解說:
-----
Python 量子運算(目錄)
https://mandhistory.blogspot.com/2022/01/quantum-computing.html
-----
沒有留言:
張貼留言
注意:只有此網誌的成員可以留言。