Python 量子運算(一四):點積
2023/01/03
-----
Fig. 14.1. Dot product.
-----
代碼 14.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | # Program 14.1:Dot product import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt def Subplot_1(): ax = plt.subplot(221) # basic setting theta = np.linspace(0, np.pi/2, 100) axis = np.linspace(0, 1, 100) zero = axis * 0 radius = 0.7 x1 = radius * np.cos(theta) y1 = radius * np.sin(theta) # basic plotting ax.plot(axis, zero, 'k') # y = 0(x_axis) ax.plot(zero, axis, 'k') # x = 0(y_axis) ax.plot(x1, y1, 'k') # cicle # vector setting coordinates = [0, 0] # original point splt_radian = np.pi / 4 # subplot # vector plotting v_p1 = splt_radian v_p2 = 0 vector_1 = [radius*np.cos(v_p1), radius*np.sin(v_p1)] # direction vector_2 = [radius*np.cos(v_p2), radius*np.sin(v_p2)] # direction plt.quiver(coordinates[0], coordinates[1], vector_1[0], vector_1[1], scale=1.15, color='r') plt.quiver(coordinates[0], coordinates[1], vector_2[0], vector_2[1], scale=1.1, color='b') plt.quiver(coordinates[0], coordinates[1]-0.05, vector_1[0], vector_2[1], scale=1.15, color='k') # red line r_line_y = np.linspace(0, radius*np.sin(1.05*splt_radian), 100) r_line_x = r_line_y * 0 + radius * np.cos(1.05*splt_radian) ax.plot(r_line_x, r_line_y, 'r', linestyle=':') # red arc phi = np.linspace(0, splt_radian, 100) x2 = 0.2 * np.cos(phi) y2 = 0.2 * np.sin(phi) ax.plot(x2, y2, 'r') ax.text(0.25, 0.1, r"$\theta=45^{\circ}$", fontsize='20') ax.text(radius+0.1, 0.05, r"$\vec u=(1,0)$", color='b') ax.text(radius*np.cos(v_p1)+0.1, radius*np.sin(v_p1), r"$\vec v=(\frac{\sqrt 2}{2},\frac{\sqrt 2}{2})$", color='r') ax.text(radius*np.cos(v_p1)+0.1, -0.15, r"$\vec w=(\frac{\sqrt 2}{2},0)$", color='k') ax.text(0.5, -0.28, '(a)', fontsize=20) ax.set_axis_off() return def Subplot_2(): ax = plt.subplot(222) # string setting s1 = r'${\rm cos}\ \theta=\frac{\vert \vec w\vert}{\vert \vec v\vert}$' s2 = r'${\vert \vec w\vert}={\vert \vec v\vert}{\rm cos}\ \theta$' s3 = r'$\vec u \cdot \vec v={\vert \vec u\vert}{\vert \vec w\vert}=$'\ r'${\vert \vec u\vert}{\vert \vec v\vert}{\rm cos}\ \theta$' # string output ax.text(0.10, 0.75, s1) ax.text(0.10, 0.45, s2) ax.text(0.10, 0.15, s3) ax.text(0.5, -0.15, '(b)', fontsize=20) ax.set_axis_off() return def Subplot_3(): ax = plt.subplot(223) # string setting s1_1 = r'$\vec v\cdot \vec u$' s1_2 = r'$=\begin{bmatrix}\sqrt2/2\quad \sqrt2/2\end{bmatrix}$'\ r'$\begin{bmatrix}1\\0\end{bmatrix}$' s2 = r'$=\frac{\sqrt 2}{2}*1+\frac{\sqrt 2}{2}*0$' s3 = r'$=\frac{\sqrt 2}{2}$' # string output ax.text(0.10, 0.75, s1_1) ax.text(0.30, 0.75, s1_2) ax.text(0.30, 0.45, s2) ax.text(0.30, 0.15, s3) ax.text(0.5, -0.15, '(c)', fontsize=20) ax.set_axis_off() return def Subplot_4(): ax = plt.subplot(224) # string setting s1_1 = r'$\vec u\cdot \vec v$' s1_2 = r'$=\begin{bmatrix}1\quad 0\end{bmatrix}$'\ r'$\begin{bmatrix}\sqrt2/2\\\sqrt2/2\end{bmatrix}$' s2 = r'$=1*\frac{\sqrt 2}{2}+0*\frac{\sqrt 2}{2}$' s3 = r'$=\frac{\sqrt 2}{2}$' # string output ax.text(0.10, 0.75, s1_1) ax.text(0.30, 0.75, s1_2) ax.text(0.30, 0.45, s2) ax.text(0.30, 0.15, s3) ax.text(0.5, -0.15, '(d)', fontsize=20) ax.set_axis_off() return mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.preamble'] = r'\usepackage{{amsmath}}' mpl.rcParams['font.size'] = 40 fig = plt.figure(figsize=(16, 16)) Subplot_1() Subplot_2() Subplot_3() Subplot_4() # plt.savefig('/content/drive/My Drive/pqc/0014_001.png') plt.show() |
解說:
-----
References
[1] Dot Product -- from Wolfram MathWorld
https://mathworld.wolfram.com/DotProduct.html
[2] Engineering Math | ShareTechnote
https://www.sharetechnote.com/html/Handbook_EngMath_Matrix_InnerProduct.html
[3] Dot Product of Two Vectors – GeoGebra
https://www.geogebra.org/m/e95pnpwk
[4] Dot Product vs Cross Product - Difference & Similarities in Tabular Form - Physics In My View
https://physicsinmyview.com/2020/10/dot-product-vs-cross-product.html
-----
Python 量子運算(目錄)
https://mandhistory.blogspot.com/2022/01/quantum-computing.html
-----
沒有留言:
張貼留言
注意:只有此網誌的成員可以留言。