missing data
2022/07/28
-----
https://pixabay.com/zh/illustrations/people-silhouettes-lots-collection-943873/
-----
「In Pandas missing data is represented by two value:
None: None is a Python singleton object that is often used for missing data in Python code.
NaN : NaN (an acronym for Not a Number), is a special floating-point value recognized by all systems that use the standard IEEE floating-point representation.」[2]。
「在 Pandas 中,缺失資料由兩種值表示:
None:None 是一個 Python 單例物件,通常用於 Python 代碼中的缺失資料。
NaN:NaN(Not a Number 的首字母縮寫詞),是所有使用標準 IEEE 浮點表示的系統都可以識別的特殊浮點值。」
-----
References
[1] Working with missing data — pandas 1.4.3 documentation
https://pandas.pydata.org/docs/user_guide/missing_data.html
[2] Working with Missing Data in Pandas - GeeksforGeeks
https://www.geeksforgeeks.org/working-with-missing-data-in-pandas/
[3] Missing values in pandas (nan, None, pd.NA) | note.nkmk.me
https://note.nkmk.me/en/python-pandas-nan-none-na/
[4] Handling Missing Data | Python Data Science Handbook
https://jakevdp.github.io/PythonDataScienceHandbook/03.04-missing-values.html
-----
Pandas(目錄)
https://mandhistory.blogspot.com/2022/05/pandas.html
-----
Python Machine Learning(目錄)
https://mandhistory.blogspot.com/2022/05/python.html
-----
沒有留言:
張貼留言
注意:只有此網誌的成員可以留言。