Python 量子運算(一五):內積
2023/01/11
-----
Fig. 15.1. Inner product.
-----
代碼 15.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | # Program 15.1:Inner product import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt class Vec: def __init__(self, t1, t2, v_r, a_r): self.t1 = t1 # theta 1 self.t2 = t2 # theta 2 self.v_r = v_r # vector radius self.v_x = v_r * np.cos(t2) self.v_y = v_r * np.sin(t2) self.a = np.linspace(t1, t2, 100) # arc self.a_r = a_r # arc radius self.a_x = a_r * np.cos(self.a) self.a_y = a_r * np.sin(self.a) def Subplot_1(): ax = plt.subplot(221) # coordinates ax.plot([-0.1, 1], [0, 0], 'k') ax.plot([0, 0], [-0.1, 1], 'k') # vector setting v1 = Vec(0, np.pi/3, 1, 0.6) v2 = Vec(0, np.pi/12, 1, 0.5) v3 = Vec(np.pi/12, np.pi/3, 1, 0.4) # vector x plt.quiver(0, 0, v1.v_x, v1.v_y, scale=1.25, color='r') ax.plot([0, v1.v_x], [v1.v_y, v1.v_y], 'r', linestyle=':') ax.plot([v1.v_x, v1.v_x], [0, v1.v_y], 'r', linestyle=':') ax.text(v1.v_x+0.05, v1.v_y+0.05, r"$\mathbf{x}$", color='r', fontsize=32) ax.text(v1.v_x-0.05, -0.1, r"$x1$", color='r', fontsize=32) ax.text(-0.15, v1.v_y, r"$x2$", color='r', fontsize=32) # vector y plt.quiver(0, 0, v2.v_x, v2.v_y, scale=1.2, color='b') ax.plot([0, v2.v_x], [v2.v_y, v2.v_y], 'b', linestyle=':') ax.plot([v2.v_x, v2.v_x], [0, v2.v_y], 'b', linestyle=':') ax.text(v2.v_x+0.05, v2.v_y+0.05, r"$\mathbf{y}$", color='b', fontsize=32) ax.text(v2.v_x-0.05, -0.1, r"$y1$", color='b', fontsize=32) ax.text(-0.15, v2.v_y, r"$y2$", color='b', fontsize=32) # arc ax.plot(v1.a_x, v1.a_y, 'r') ax.text(0.36, 0.36, r"$\alpha$", color='r', fontsize=32) ax.plot(v2.a_x, v2.a_y, 'b') ax.text(0.41, 0.03, r"$\beta$", color='b', fontsize=32) ax.plot(v3.a_x, v3.a_y, 'k') ax.text(0.11, 0.11, r"$\alpha - \beta$", color='k', fontsize=32) ax.text(0.5, -0.34, '(a)', fontsize=20) ax.set_axis_off() return def Subplot_2(): ax = plt.subplot(222) # string setting s1_1 = r'$\mathbf{x}=(x_1,\cdots,x_n),$' s1_2 = r'$\mathbf{y}=(y_1,\cdots,y_n).$' s2_1 = r'$\mathbf{x} \cdot \mathbf{y}$' s2_2 = r'$=x_1y_1+ \cdots +x_ny_n$' s2_3 = r'$=\sum_{i=1}^n x_iy_i.$' s3_1 = r'$\mathbf{x}^T\mathbf{y}$' s3_2 = r'$=\begin{bmatrix}x_1 \cdots x_n\end{bmatrix}$'\ r'$\begin{bmatrix}y_1\\ \vdots \\y_n\end{bmatrix}$' s3_3 = r'$=\sum_{i=1}^n x_iy_i$.' # string output ax.text(0.1, 0.75, s1_1) ax.text(0.1, 0.63, s1_2) ax.text(0.1, 0.45, s2_1) ax.text(0.3, 0.45, s2_2) ax.text(0.3, 0.33, s2_3) ax.text(0.1, 0.15, s3_1) ax.text(0.3, 0.15, s3_2) ax.text(0.3, 0.03, s3_3) ax.text(0.5, -0.15, '(b)', fontsize=20) ax.set_axis_off() return def Subplot_3(): ax = plt.subplot(223) # string setting s1 = r'$\|\mathbf{x}\|=\sqrt{x_1^2+x_2^2},$' s2_1 = r'$\langle \mathbf{x}, \mathbf{y} \rangle$' s2_2 = r'$=\|\mathbf{x}\| \cos(\alpha - \beta) \|\mathbf{y}\|$' s2_3 = r'$=x_1y_1+x_2y_2.$' # string output ax.text(0.10, 0.75, s1) ax.text(0.20, 0.55, s2_1) ax.text(0.10, 0.35, s2_2) ax.text(0.10, 0.15, s2_3) ax.text(0.5, -0.15, '(c)', fontsize=20) ax.set_axis_off() return def Subplot_4(): ax = plt.subplot(224) # string setting s1_1 = r'$\cos (\alpha - \beta)$' s1_2 = r'$=\cos\alpha\cos\beta+\sin\alpha\sin\beta$' s1_3 = r'$=\frac{x_1}{\|\mathbf{x}\|}\frac{y_1}{\|\mathbf{y}\|}$'\ r'$+\frac{x_2}{\|\mathbf{x}\|}\frac{y_2}{\|\mathbf{y}\|}$' s1_4 = r'$=\frac{x_1y_1+x_2y_2}{\|\mathbf{x}\|\|\mathbf{y}\|}.$' # string output ax.text(0.20, 0.75, s1_1) ax.text(0.10, 0.55, s1_2) ax.text(0.10, 0.35, s1_3) ax.text(0.10, 0.15, s1_4) ax.text(0.5, -0.15, '(d)', fontsize=20) ax.set_axis_off() return mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.preamble'] = r'\usepackage{{amsmath}}' mpl.rcParams['font.size'] = 40 fig = plt.figure(figsize=(16, 16)) Subplot_1() Subplot_2() Subplot_3() Subplot_4() #plt.savefig('/content/drive/My Drive/pqc/0015_001.png') plt.show() |
解說:
-----
References
[1] Inner Product -- from Wolfram MathWorld
https://mathworld.wolfram.com/InnerProduct.html
[2] 內積的定義 | 線代啟示錄
https://ccjou.wordpress.com/2010/01/27/%E5%85%A7%E7%A9%8D%E7%9A%84%E5%AE%9A%E7%BE%A9/
[3] python 兩點連線matplotlib_yanni0616的博客-CSDN博客_python兩點之間連線
https://blog.csdn.net/yanni0616/article/details/99696020
[4] Python Classes
https://www.w3schools.com/python/python_classes.asp
# norm
# \|
[5] How to write norm symbol in LaTeX like ||a||?
https://www.physicsread.com/latex-norm-symbol/
# 向量
[6] 「LaTeX」LaTeX 中三種向量表示:粗體1,粗體2,箭頭向量- 嗶哩嗶哩
https://www.bilibili.com/read/cv3599113
-----
Python 量子運算(目錄)
https://mandhistory.blogspot.com/2022/01/quantum-computing.html
-----
沒有留言:
張貼留言
注意:只有此網誌的成員可以留言。